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The secondary flow patterns induced by a differentially rotating lid in a partially 
filled, rapidly rotating, tapered cylinder have been investigated. Using a new laser- 
Doppler velocimeter system capable of making measurements in the rotor frame of 
reference, the radial dependence of the azimuthal and axial velocity components was 
measured a t  two axial positions in the rotor. A linear, asymptotic analysis and a 
finite-difference simulation were made for comparison. The latter was performed on 
a boundary-fitted computational mesh so that the slanted rotor wall and the sagging 
free surface could be accommodated in the model. The agreement between the 
experimental and numerical results was excellent for the azimuthal velocity 
component and good for the axial component. Of particular interest is the modified 
Et boundary layer on the slanted wall, a feature which is not present with a vertical 
sidewall. 

1. Introduction 
The flow of a viscous, incompressible fluid in a partially filled, rapidly rotating, 

tapered cylinder with a differentially rotating lid has been investigated here using 
analytic, numerical and experimental means. A schematic of the rotor used in this 
study, including approximate dimensions, is given in figure 1. Typical rotation rates 
were on the order of 1000 r.p.m., so that the free surface was nearly vertical. 

Water mock-up studies such as that reported here have been used to develop 
concepts and perfect experimental and numerical techniques applicable to gas 
centrifuges used for uranium enrichment. In  this study a new laser velocimeter (LV) 
system capable of measurements in the rotor frame of reference was developed, and 
along with a new finite-difference algorithm for strongly rotating flows in non-right 
circular cylinders, is reported here for the first time. 

I n  a gas centrifuge the heavier 23*UF6 molecules tend to be concentrated near the 
periphery while the lighter 235UF, molecules move toward the axis. The imposition 
of an axial countercurrent flow as studied here (in an incompressible fluid, of course) 
greatly enhances the separation effect (Hoglund, Shacter & Von Halle 1979 ; Olander 
1972). In a gas centrifuge such secondary flows may be driven thermally; that is, by 
heating or cooling the side and end walls in some prescribed pattern. Mechanical 
drives are also used. In the latter case the secondary flow may be driven by the drag 
of a stationary scoop used for product and/or waste withdrawal or by the insertion 
or removal of mass. I n  a water mock-up study, an independently driven endcap 
provides a convenient means to  control the strength of the countercurrent drive. I n  

t Prevent address : High Temperature Gas Dynamics Laboratory, Mechanical Engineering 
Department, Stanford University, Stanford, CA 94305, USA. 

18-2 



542 R. J .  Ribando. J .  L. Palmer and J .  E.  Scott 

Dimensions 
in cm 

FIGURE 1. Schematic of tapered rotor. 

addition the tapered outer wall used in this study provides another possibility for 
selective tailoring of the strength and pattern of the lid-driven countercurrent flow. 
A tapered configuration in a gas centrifuge would by itself induce a countercurrent 
flow because of the density difference between the two isotopes. 

Secondary flow patterns in partially filled, rapidly rotating, right circular cylinders 
have been studied extensively. Shadday (1982) and Beggs (1984) measured the 
azimuthal and axial velocity profiles in a right circular cylinder with an LV system 
in the laboratory frame of reference. A theoretical analysis of this flow (Greenspan 
1982) was performed concurrently with a numerical investigation (Shadday, Ribando 
& Kauzlarich 1983; Ribando & Shadday 1984). In  particular, Shadday found 
experimentally and confirmed numerically an unexpected Ei  layer along the free 
surface. An analysis of this flow has also been given by van Heijst (1986). Smith 
(1983) measured secondary flows in a tapered cylinder, but too small a taper angle 
(1.6") resulted in only minor changes from vertical wall results. 

In  the current study a 5" wall angle was chosen based on preliminary numerical 
calculations. The displacement caused by this taper is significant compared to the 
Stewartson layer thickness, and thus is expected to yield measurable differences from 
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straight-walled results, but not enough to preclude machining the cylinder wall out 
of a stock, thick-walled lucite pipe. A new LV system capable of measurements in the 
reference frame of the rotor (Popp 1987) was designed and is discussed here for the 
first time. As will be seen, the secondary velocities typically produced by the 
differentially rotating lid are only of the order of a few percent or less of the solid- 
body flow. Thus, the possibility of measuring relative to solid-body rather than in the 
laboratory frame offers the potential for greatly improved accuracy. I n  addition a 
new finite-difference simulation was developed using a boundary-fitted coordinate 
system so that rotating flows in axisymmetric, but otherwise arbitrarily shaped 
cylinders can be simulated. Here the increased geometric flexibility was used to 
model the sloped cylinder wall and the parabolic free surface. 

A number of parameters characterize this system. Geometric parameters include 
the aspect ratio, fill ratio, and taper angle of the rotor. Other parameters include the 
Rossby, Ekman, and Froude numbers, all of which could be easily varied during the 
course of the experiment. The significance of each will be explained here. 

In  the absence of differential lid rotation, the flow in the rotor is simply one of 
solid-body rotation, i.e. u,, = roe. 
The differentially rotating endcap produces a perturbation velocity which is 
superimposed on the solid-body flow; i.e. 

= t)&, + 0’. (1.2) 

Henceforth the velocity will be considered only in a reference frame rotating with 

(1.3) 

Written in terms of q ,  the continuity and Navier-Stokes equations may be non- 

the constant angular velocity of the rotor. The velocity of interest is then 

q = v-uo,b = v’. 

dimensionalized and reduced to (Greenspan 1968) 

v*q = 0, (1.4) 

a4 - + € q . V q + 2 R x q  at = - v p - E V x ( V x q ) .  

Here L W 1 ,  U ,  and ps2UL have been used to non-dimensionalize r ,  t ,  q, and p ,  the 
reduced pressure, respectively. 

The Rossby number 8 is seen to  measure the relative importance of the convective 
terms in the Navier-Stokes equations. Here the characteristic velocity U is taken as 
(s2,-Q) L ,  where 52, refers to the independently driven endcap and 52 to the rotor 
itself. Then the Rossby number is simply 

Values used in the experiments ranged from 0.1 to 0.5. 

E = v/s2L2, The Ekman number, 

where v is the fluid kinematic viscosity and L is the container length, measures the 
importance of viscous forces relative to the Coriolis force. Values used here are 
typically on the order of lop6 to For low values of Ekman number the flow 
consists of an inviscid interior plus boundary layers of thickness proportional to 
fractional powers of the Ekman number. On non-vertical surfaces, which here 
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include the ends and the slanted, wall, Ekman layers of thickness of order Ei form. 
These layers transport fluid radially and bring about transition between the interior 
flow, where viscous forces are negligible, and the solid surfaces of the container. At 
any radius a t  which a discontinuity in angular and/or axial velocity occurs, 
Stewartson layers of thickness proportional to Ea and/or Ei  will form. The Ef layer 
serves both to smooth the axial velocity and to transport fluid axially, while the Ef 
layer smooths the discontinuity in the angular velocity. 

The last parameter, which in solid-body rotation determines the free surface shape, 
is the Froude number: 

I n  solid-body rotation the water-air interface is a paraboloid described by 

(1.8) 

z = Fr$r2+G. (1.9) 

Fr = Q2 Llg .  

The asymptotic analysis of this problem detailed in Palmer (1987) assumes infinite 
Froude number; that is, a vertical inner boundary. The numerical simulation 
discussed in the next section uses the shape in solid-body rotation ; i.e. the parabola 
given above as the free surface shape. Under the higher Rossby number conditions 
( E  7 0.3) it was possible to see small changes in the free surface shape particularly 
near the top of the rotor as the disk speed was increased. This effect is not included 
in the model. 

The work of Palmer (1987) assumes that the Ekman number to the fractional 
powers a, 5 and and the Rossby number, E ,  are much smaller than the mean non- 
dimensional fluid thickness, so that a linearized asymptotic analysis may be 
performed. The interface between the fluid and the air core is assumed to support no 
viscous stresses. Details of the solution procedure including the geostrophic flow, 
Ekman layers on the ends and slanted sidewall and shear layers a t  the inner free 
surface and centred on the inner radius of the slanted sidewall may be found in 
Palmer (1987). The general flow pattern, evaluated using the stream functions thus 
determined, shows a vortical structure in the meridional plane similar to that 
computed numerically and displayed later. Of particular interest is the boundary 
layer on the slanted sidewall, the thickness of which is found to be (coseca)iEi. 

2. Numerical model 
In  order to simulate the flows for which the measurements reported here were 

made, a finite-difference model of the linearized governing equations was developed. 
This model incorporates many of the features of previously reported models for 
strongly rotating axisymmetric flows (Shadday et al. 1983; Ribando & Shadday 
1984) but was written here using a boundary-fitted coordinate system. This feature 
was used to incorporate both the slightly off-vertical free surface and the sloped outer 
boundary of the cylinder. 

The time-dependent linearized, axisymmetric governing equations are written in 
component form as follows : 
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1 a aw 
ra r  
--ru+- = 0. 

These equations must be transformed from the (r,z)-physical domain into the 
rectangular (7, [)-computational plane (Maliska & Raithby 1984; Pate1 & Briggs 
1983; Ostrander 1985). The radial momentum equation is typical: 

The continuity equation transforms to 

a a 
a t  a7 
-rU+-rrW= 0. 

Here, J = rgz,-r,z5 and the metrics are related by & = z,/J, tZ = -r , , /J ,  7,. = - zg / J ,  
qz = rs/J.  The coefficients a, p, and y are equal to r,”+z,”, rgr,+zgzl, and rf+zf, 
respectively, and U = Z, u- r1 w and W = rg w - zEu are the contravariant velocities. 

Equation (2.5), analogous equations for the other velocity components and (2.6) 
were solved using a primitive variable, time-marching, finite-difference procedure 
(Harlow & Welch 1965) extended and improved for strongly rotating flows in a 
manner similar to that discussed in Shadday et al. (1984) and still further altered for 
non-orthogonal meshes following the procedures discussed in Maliska & Raithby 
(1984). 

Because rotating flows support inertial waves which may be excited inadvertently 
by any source including the truncation error of the finite-differencing (Greenspan 
1968; Heuser, Ribando & Wood 1986), and also can be a source of numerical stability 
problems, all terms in the subset of the above equations which governs inviscid 
inertial waves were treated in a fully implicit fashion. Thus, in schematic form (2.5) 
was differenced as 

where the superscripts N and N +  1 indicate the present and advanced time levels, 
respectively. The azimuthal and axial equations are differenced similarly. 

As in previous work the azimuthal momentum equation is used to  eliminate the 
vN+l in the radial momentum equation. Forms for uN+l and wN+I may then be 
substituted into the difference form of the continuity equation (2.6) evaluated a t  the 
N +  1 time level to form an elliptic equation for pressure at the new (N+ I )  time level. 
The procedure by which two rather than one set of velocity equations are solved per 
primary (pressure) control volume is discussed extensively in Maliska & Raithby 
(1984) and used here. 

I n  all of the proceedings i t  is assumed that the time step At is the same for the 
whole grid. For low-Ekman-number flows, the explicit treatment of the viscous 
terms used here may lead to excessively small time steps since, in order to resolve the 
Ekman layers at the ends, one needs a vertical grid spacing on the order of to f of the 
boundary-layer thickness. The current approach is to use a ‘skewed ’ time transient, 
that  is to advance the parabolic velocity equations, e.g. (2.7), a t  a substantial 



546 R.  J .  Ribando, J .  L.  Palmer and J .  E .  Scott 

fraction of the maximum allowable time step computed locally One other feature 
which distinguishes the method used here is that for low values of Ekman number 
( < where the Taylor-Proudman theorem is approximately valid, only direct 
methods (Dongarra et al. 1979) were found feasible for solving the pressure equation. 
Long-wavelength errors characteristic of this regime caused iterative methods to be 
impractical. 

The viscous terms are evaluated using centred differences. Slip and no-slip 
boundary conditions are implemented by reflecting contravariant velocities with 
appropriate sign and then computing the velocity components from them. The free 
surface shape is input, and that surface is taken to be impermeable and free slip. 

3. Experimental apparatus and procedure 
While earlier studies used an LV system fixed in the laboratory frame of reference 

(Shadday 1982), the system used for this experiment (figure 2) was similar to that of 
Tokoi, Ozaki & Harada (1980), whose rotating frame of reference, backscatter LV 
system was used to measure azimuthal and axial velocities in a rapidly rotating gas. 
The source of the incoming radiation to this system was a Lexel Model 95-4 argon- 
ion laser operated in its fundamental (TEM,,) mode a t  a wavelength of 514.5 nm and 
a power of 340 mW. Details of the collection optics and signal processing electronics 
are given by Beggs (1984) and Popp (1987). As before, the fluid inside the lucite rotor 
was seeded with neutral-density polystyrene latex particles 1.091 0.0082 pm in 
diameter (Beggs 1984). 

A phase-angle variation between the rotating beam splitter and the rotor was used 
to measure the axial velocity profiles. This method is illustrated in figure 3. The 
resulting tilt in the plane formed by the beams from the horizontal is identified as the 
angle K .  The lens was moved axially to move the probe volume radially between the 
free surface and the wall. Approximately 575 individual frequency measurements 
were averaged to obtain the velocity a t  each of about 60 points in the interval. A 
total of five similar radial traverses were made to obtain a single set of azimuthal and 
axial velocity profiles. Initially, the optici angle K = 0" was used to measure the 
azimuthal velocity. Ideally, the next step would have been to make a radial traverse 
with K = 90"; however, because the azimuthal perturbation velocity is generally an 
order of magnitude greater than the axial velocity, particles would be swept through 
the probe volume so quickly that they would not cross enough fringes to create a 
useful signal. A remedy for this problem, similar to, but not identical with that used 
by Shadday (1982), involved making two radial traverses of the fluid layer a t  
K = 72" and -72". The axial velocity component could then be determined from 
these measurements. A second independent measurement of the axial velocity was 
made with radial traverses a t  K = 48" and -48", to serve as a verification of the 
first measurement. 

Many sources of small, random errors were present in the LV, system, including 
variations in the fluid composition and temperature, uncertainties in the rotor and 
disk speeds, various reflections of laser and ambient light into the photomultiplier 
tube, etc. Beggs (1984) discussed the sources of error which are pervasive in LV 
systems of this type, and every attempt was made to minimize these errors. In  
addition to random error, two important sources of systematic error existed in the 
LV system used €or this study. These errors, specific to and inherent in the rotating 
reference frame LV system, were caused by slight mechanical misalignments which 



Flow in a partially filled, rotating, tapered cylinder 547 

Incident laser beam 

Stationary quarter wave plate 

Beam-splitter assembly 

ustable opening aperture 

-scattered signal collection 

Lens traversing assembly 

Differentially rotated disk 

FIGURE 2. Schematic of apparatus showing LV system. 

were not present in the laboratory frame of reference system used by Shadday 
(1982) and Beggs (1984). The first error is the small velocity fluctuation 
superimposed on the measured velocity in the rotating frame which results from any 
horizontal displacement or tilt of the focusing lens with respect to the axis of the 
beam splitter, mirror, and rotor. The misalignment of these axes produced a circular 
motion of the probe volume in the axial-azimuthal plane in the rotating reference 
frame. Fortunately, the presence of this misalignment could be monitored during the 
experiment by examining the signal displayed on an oscilloscope for a sinusoidal 
pattern. When a fluctuating pattern was detected in the signal, the position of the 
lens axis was manually adjusted to minimize the fluctuation. 

The other systematic error was caused by minor changes in the alignment of the 
rotor drive system between measurement periods. This resulted in a rotational phase 
angle between the beam splitter and the rotor slightly different, by an amount K', 
from the angle set by the transmitting optics. This small angle, which was 
consistently on the order of lo, was constant over the measurement period, but 
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FIGURE 3. 
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Overview of rotating-reference-frame laser velocimeter (Tokoi et al. 1980). 

varied between periods when the rotor was removed from the system. This improper 
phase-angle variation was largely eliminated by adjustment of the rotor drive pulley 
with the optics in the pure azimuthal measurements mode ( K  = 0') prior to each 
measurement period. The effect of K' on the measured velocities was to displace the 
entire profile by a nearly constant amount dependent on its value. 

Locating the probe volume inside the fluid layer was complicated by the three- 
dimensionality of the refraction which occurs when the laser beams pierce the 
parabolic free surface. A detailed analysis of the problem is given by Popp (1987). 
This effect also had to  be accounted for in the conversion of Doppler frequency to 
velocity. Although its size was slightly affected by its location, the ellipsoidal probe 
volume was approximately 3 mm along its major axis by 1 mm along its minor axis. 

Of central importance in this study is the determination of the Ekman number. 
While D and L could be accurately measured, the value of the kinematic viscosity v 
was subject to some error. A mixture of distilled water and 75.7% by volume 
glycerine was used throughout the measurements. During preliminary testing of the 
LV system, i t  was found that the fluid temperature varied with the Rossby number. 
Approximate equilibrium temperatures were obtained for Rossby numbers of 0.10 
and 0.50 by monitoring the temperature changes over a 3 h  spin period for each 
Rossby number. Before each test, the fluid was heated in a closed container to the 
expected equilibrium temperature for the Rossby number to be used. The fluid 
temperature was recorded after a spin-up and equilibration period of about 1 h, 
between the five radial traverses made to complete a single set of measurements, and 
after the entire measurement period. Temperatures ranged from 24.7 f 0.5 "C at a 
Rossby number of 0.1 to 31.7 & 1.2 "C a t  a Rossby number of 0.5. 

Preliminary testing under conditions identical with those during the data 
collection period also revealed that a significant amount of evaporation took place 
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from the fluid over long spin times, particularly at large Rossby numbers. Since the 
vapour pressure of glycerine is less than 1 % of that of water for the temperature 
range used in the experiments, a small, empirically determined amount of distilled 
water was added to the mixture between radial traverses to replace the evaporated 
amount. Approximately 5 ml of distilled water was added every 3 h. The total fluid 
volume used in the experimentas was approximately 1770 ml. The fluid thickness a t  
the axial position z = 0.54L was about 2.0 cm ; while a t  the other axial position where 
data were taken, z = 0.80L, the thickness was about 2.3 cm. 

4. Results 
Measured and numerical results for two cases will be presented here. These 

included measurements in the slanted-wall rotor and also for a reference straight-wall 
rotor a t  similar conditions (Popp 1987). The Rossby number for all cases presented 
here was 0.10 corresponding to a 10 YO overspeed, so that the linear finite-difference 
analysis should be valid for comparison. Measurements were made at Rossby 
numbers up to 0.50, but those higher Rossby number results will only be discussed 
in passing. The numerical calculations were run out to 1.5-2.0 times the spin-up 
timescale (E- i )  based on the time steps away from endwalls. Using a 30 x 40 mesh, 
this took between 4 and 5 min of CPU time in the vectorized mode on a Convex 
C- 1 minisupercomputer. 

Azimuthal and axial velocity measurements were made at two axial positions 
along the slanted rotor. Figure 4 (a )  shows an azimuthal velocity traverse at slightly 
above the midpoint on the rotor for an Ekman number of 9.7 x lo+. The radial 
position has been scaled by the local fluid-layer thickness, so that a = 0 corresponds 
to the free surface and = 1.0 corresponds to the solid wall. Also indicated along the 
horizontal scale are the distances E i  cos a/(sin a);, Ei,  and Ea, the characteristic 
boundary-layer thicknesses anticipated from the analysis. The velocities have been 
scaled by the peripheral speed of the lid (eQR,,,) rather than the original form (QL) 
which was used to non-dimensionalize the governing equations. The approximate 
absolute velocity in m/s in the rotating frame can be determined by multiplying the 
dimensionless velocity plotted by 10e (eQR,,, = e x 2x x 16.67 Hz x 9.53 cm x 
1Oe m/s). Thus the azimuthal values through about 80% of the layer thickness 
correspond to about 0.2 m/s ( =  10 x 0.1 x 0.2) relative to the rotor. In  contrast the 
rotor peripheral speed is about 10 m/s. 

The measured data show little scatter and compare extraordinarily well with the 
finite-difference predictions (solid line) over the whole range, For comparison a case 
with a very high Froude number such that the interface was vertical was also 
modelled ; these results are denoted by the dashed line. The effect of the small free 
surface slope (approximately 1 % )  on the flow is seen to be substantial. With the 
vertical free surface the fluid ascends without a radius change. With the slanted free 
surface the fluid is forced outward where, by conservation of angular momentum, it 
shows a lower angular velocity than i t  would otherwise. 

Figure 4 ( b )  shows a radial traverse of the axial velocity a t  the same axial position. 
Agreement between the numerical solution and the experimental results is 
acceptable, though not as good as for the azimuthal component. The precision of the 
experimental points is less than for the azimuthal component since these velocities 
are a full order of magnitude smaller and, as discussed earlier, were measured 
indirectly. In  particular the extremes predicted by the numerical model appear 
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FIQURE 4. Measured and computed traverses at z = 0.54 for Ekman number = 9.7 x lo-', Rossby 
number = 0.10. Experimental data indicated by symbols; solid line indicates computed results at  
actual Froude number (218); dashed line indicates computed results a t  Froude p m b e r  of 10:. 
Characteristic layer thicknesses are indicated on the abscissa. Here E * stands for Ei cos a(cosec a)T. 
( a )  Azimuthal velocity, ( b )  axial velocity. 
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FIGURE 5. Results for same parameters as in figure 4, but a t  z = 0.80. (a) Azimuthal velocity, 

( b )  axial velocity. 
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FIGURE 6. Computed streamlines (a )  and isobars (b )  for E = 9.7 x Horizontal scale has 
been expanded by a factor of 5.0. 

attenuated in the laboratory data. Again the finite-difference results a t  the actual 
Froude numer of 218 show better agreement through the inner half of the layer than 
do the infinite-Froude-number results. 

Results with the same parameters but a t  the other axial station ( z  = 0.80) are 
plotted in figure 5(a ,  b ) .  Here the characteristic layer thicknesses marked on the 
abscissa appear less than at the other station; this is simply a result of the layer 
thickness being greater higher up in the cylinder. Significantly higher axial velocities 
are found in both numerical and measured velocities a t  the free surface than at  the 
other measuring position. Agreement here is not as good as farther down the rotor. 
One explanation is that near the top of the rotor the deviation in shape of the free 
surface from the assumed paraboloid is beginning to become important. Plots of the 
computed stream function (figure 6 a )  and isobars (figure 6 b ) ,  both of which were 
expanded by a factor of five in the radial direction, lend some insight. The 
streamlines along the free surface near the upper lid clearly show a convergence 
corresponding to the higher-than-measured axial velocities. The isobar plot is more 
revealing. Outside the boundary layer on the slanted sidewall, the Taylor-Proudman 
theorem is seen to  be operative; i.e. the isobars show little variation with altitude. 
It is also apparent why solving the pressure equation by a pointwise iterative 
procedure is not feasible. More importantly several isobars are seen to intersect the 
free surface. The surface was modelled as being free of viscous stress, but was taken 
as impermeable with the solid-body-rotation shape. Thus, a non-zero surface 
pressure is possible. If the actual distorted free surface shape (corresponding to the 
non-zero Rossby number) had been known and used rather than the parabola, then 
presumably the free surface would have been found to be both a zero pressure and 
impermeable boundary. 

Both measured and computed results for similar parameters in a straght-walled 
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FIQURE 7. Measured and computed traverses for straight-walled rotor at z = 0.55 for Ekman 
number = 10.9 x Rossby number = 0.10, Froude number = 210. Experimental data indicated 
by symbols ; solid line indicates computed results at Froude number = 210. (a) Azimuthal velocity, 
f b )  axial velocitv. 
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rotor (figure 7a,  6 )  show a marked contrast. A systematic error, probably 
corresponding to the second of the two causes discussed earlier (improper phase- 
angle variation), is evident here, but nevertheless the picture is seen to be quite 
different. The thicknesses seen are of order Ef and Ei,  and do not show the thinner 
modified E t  layer seen with the slanted-wall rotor. 

Measurements were also made for Rossby numbers of 0.20,0.30,0.40, and 0.50 a t  
similar Ekman numbers. The azimuthal velocities (again non-dimensionalized by the 
peripheral speed of the disk in the rotating frame) were nearly the same in the outer 
10% of the layer. However the value of the ‘plateau’ (see figures 4a, 6 )  decreased 
from about 0.2 a t  a Rossby number of 0.10 to about 0.15 a t  a Rossby number of 0.50. 
Were nonlinear effects negligible through this whole range, these traverses would 
collapse to a single line. Similarly the axial velocities were similar near the wall, but 
were much attenuated away from the wall in the higher Rossby number cases. As 
pointed out earlier, at higher disk overspeeds (higher Rossby numbers) it was 
actually possible to see the free surface shape change as the disk overspeed was 
changed. Thus any analysis for these higher Rossby number cases would require a 
mechanism for moving the free surface as well as the inclusion of the nonlinear terms. 

5.  Conclusions 
Both measured and computed results clearly show the modified Ek layer along the 

slanted sidewall as predicted by the analysis. This is in contrast to the Ei  and E i  
layers seen with the vertical-walled cylinder. Trends with increasing Rossby number 
were measured, though not emphasized here. 

The feasibility of using a laser-Doppler velocimeter in the rotor frame of reference 
in an incompressible fluid has been demonstrated. Data scatter has been greatly 
reduced from previous results taken in the laboratory frame. With due attention to 
alignment, quite accurate measurements of secondary flows were shown to be 
possible. 

Good agreement was found with the results of a finite-difference simulation of the 
linearized governing equations. Using previous experience with strongly rotating 
flows, a robust, efficient solution algorithm on a boundary-fitted mesh was developed. 
Better agreement would be possible if the free surface shape were allowed to distort 
slightly with the solution rather than being fixed with the solid-body-rotation shape. 
This would require an adaptive mesh, but would be useful and necessary for the 
analysis of flows at higher Rossby numbers. 

Support of this research by the US Department of Energy under contract DE- 
AC05-820R20900 is gratefully acknowledged. 
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